
Re
overing minimal L systemsfrom words and lengths sequen
esG. Hunault, Universit�e d'AngersL. Pi
ouleau, AngersCovered topi
s. - Formal languages- Algorithms for biologi
al 
omputing- Lindenmayer grammars, L systemsMotivations. Working for many years with biologists of the national re-sear
h institute INRA, we have met on several o

asions the need for modelingtools that would build parallel grammars from observations data.Main results and their signi�
an
e. First, it is de
idable to build a mini-mal parallel grammar from a sequen
e of words (with a 
onstru
tive proof). Sobiologists have a tool that automates the making of su
h a grammar. Se
ond,it is possible to build a minimal parallel grammar from a sequen
e of numbers(interpreted as words lengths); the proof is not 
onstru
tive but for some poly-nomial sequen
es (whi
h are very 
ommon for biologists) we have found partialformulas, here again easily programmable, to obtain one (if not the only one)minimal parallel grammar 
orresponding to the data.Abstra
t. Formal languages are sets of words. Classi
al generative devi
esfor su
h languages are grammars, either sequential or parallel. We deal herewith spe
ial parallel propagating deterministi
 grammars 
alled Lindenmayergrammars or "L systems" for short and we will show how to build su
h gram-mars with a minimal alphabet given the words or their length at ea
h rewritingstep. Se
tion 1 is devoted to notations and de�nitions for grammars whereasse
tion 2 does the same for "unilinear" re
urent sequen
es of positive integers.Se
tion 3 gives our main theorems and se
tion 4 shows an appli
ation of thetheory therefore giving to biologists a way to model and extend biologi
al data.



1. Languages and GrammarsLet E be an alphabet, that is, a set whose elements are 
alled symbols. A wordm on E is a �nite sequen
e of symbols of E. The empty sequen
e, also known asthe empty word will be denoted by !. The set of all words on E is denoted byW (E). The 
on
atenation of two sequen
es (one sequen
e following the other)endows W (E) with the stru
ture of a non abelian semigroup, whose neutralelement is !. A language on E is a subset of W (E). It is usual to note an the(
on)
atenation of n 
onse
utive symbols a.On way to build su
h languages, possibly in�nite, is to use rewriting systems. Arewriting system S on E is a triple (E;A;R) where A is a word on an alphabetE 
alled the axiom and R a �nite set of 
ouples (ai; bi) of words on E 
alledrewriting rules and usually written ai ! bi. Applying the same rule for allo

uren
es of a word gives parallel rewriting. Applying possibly di�erent rulesfor the o

uren
es of the same word gives sequential rewriting. For instan
e,parallel rewriting of a a with the two rules a ! b and a ! 
 leads only to b bor 
 
 whereas sequential rewriting with the same rules leads also to b 
 and 
 b.If a ! x1, x1 ! x2,... xn ! b is a sequen
e of rewritings then b is said to bederived from a, denoted by a ) b. The language generated by the rewritingsystem S = (A;R) is the set of all words that 
an be derived from the axiom :L(S) = f m 2 W (E) ; A) m gClassi
al formal languages distinguish between "good" words build upon ter-minal symbols and "bad" or temporary words build upon terminal and nonterminal symbols. Thus a generative phrase stru
ture grammar is a quadrupleG = (T ;N ; B;R) where T is the set of terminal symbols,N the set of non termi-nal symbols, B is a (non terminal beginning) symbol, R a set of sequential rules.The language generated by G is de�ned by the set of words built upon terminalsymbols, derived from the beginning symbol : L(G) = fm 2W (T ) ; B ) mg.A propagating deterministi
 Lindenmayer system with no intera
tion (PD0L)or L system for short in this arti
le is a triple G = (S; A;R) where S is a setof symbols 
alled alphabet, A is a word 
alled the axiom, R a set of parallelrules su
h that- no rule has ! as right hand side,- ea
h left hand side of the rule 
onsists of exa
tly one symbol,- there is one and only one rule for ea
h symbol.In other words, an L system is the parallel equivalent of a deterministi
 
ontextfree non erasing traditional grammar. It has to be noted that a PD0L with analphabet of n symbols si is de�ned by exa
tly n rules (ri) : si ! ti where ea
hword ti has length at least 1. From now on, we will suppose that the alphabetis ordered.Being deterministi
, not erasing and without 
ontext, an L system produ
esonly one word at ea
h rewriting step. 2



For su
h grammars, the rewriting rules de�ne a morphism f on W (S): letf(t1t2:::tn) = f(t1)f(t2):::f(tn) where the ti are elements of the alphabet; fn(A)will denote the n-th rewriting of the axiom with the usual 
onvention f0(A) = A.The words sequen
e of the L system is de�ned by the fun
tion n ! fn(A)and its lengths sequen
e is then de�ned by the fun
tion n ! jfn(A)j wherejmj is the length of the word m, that is, its number of symbols. In a similarway, for a sequen
e (wn) of words, the asso
iated lengths sequen
es is (jwnj).Let s1, s2...sp be the ordered elements of the alphabet. The 
anoni
al form ofa word m is sn1(m)1 sn2(m)2 :::snp(m)p where ni(m) is the number of o

uren
es ofsymbol si in m. One may see this 
anoni
al form as a kind of fa
torization. The
anoni
al words sequen
e is the sequen
e of the words in 
anoni
al form.The ve
tor (n1(m); n2(m); :::np(m)) is 
alled the 
ounting ve
tor of the wordm, usually denoted by Cv(m).For instan
e the L system over the alphabet fa; bgwith axiom a and the two rulesa ! b, b! ba produ
es su

essively the words b, ba, bab, babba, babbabab... Sothe 
anoni
al words sequen
e is b, ab, ab2, a2b3, a3b5 and the lengths sequen
e(in
luding the axiom) gives the Fibona

i numbers 1,1,2,3,5,8... whi
h verifythe linear relation Fn = Fn�1 + Fn�2 with F (0) = F (1) = 1. The indu
edmorphism is here de�ned by f(a) = b, f(b) = ba.For further details on formal languages and L systems, see [SaLo73,RoSa80℄.2. Sequen
es and GrammarsFor the rest of this arti
le, every sequen
e of numbers will be a sequen
e ofstri
tly positive numbers whi
h is not de
reasing ex
ept expli
ity mentioned.De�ninition 1. A sequen
e of numbers (un)n2N is 
alled a Lindenmayergrowth sequen
e (or LG) if there exist an integer T , a square matrixM of size Twith integer positive 
oeÆ
ients and a ve
tor L of T non negative integers su
hthat 8n; un = L : Mn : Rwhere R is the 
olumn-ve
tor (1; 1:::1) of length T . The 
ouple (L,M) is 
alleda Parikh representation of (un)n2N . The size T is 
alled the Parikh dimensionof the sequen
e and will be noted dimP ( (un) ).It is a restri
tion of the 
lassi
al of the de�nition of a IN-rational fun
tion usedin Formal Power Series Theory. See for instan
e [SaSo78,RoSa80℄.For instan
e, the sequen
e de�ned by L = (1; 0; 0) and M = 0� 2 1 00 2 10 0 3 1Ais a LG sequen
e of Parikh dimension 3 whose values 
orrespond to n 7! 3n.3



De�ninition 2. A sequen
e (un)n2N is 
alled an unilinear re
urent sequen
e(or UR) of order R if there exists a minimal positive integer R su
h that9a1; a2:::aR 2 ZZ ; a1 6= 0 and 8n; n > R ) un = RXk=1 ak : un�kHere again, it is a restri
tion of the de�nition of a 
lassi
al linear re
urentsequen
e with 
onstant 
oeÆ
ients where we impose� minimality (for we will want minimal alphabets),� positivity (in order to deal with word lengths),� integer 
oeÆ
ients (for they lead to 
ounts of letters),� divisibility (sin
e un is the length number n).The integer R is 
alled the re
uren
e dimension of the sequen
e and will benoted dimR( (un) ).The 
ondition a1 6= 0 is there to ensure that we use the same relation forall ui with a 
oherent beginning (look at zn underneath). So the sequen
eun = 3un�1 + 2un�2 � un�3 may be UR depending on u0, u1 and u2 but thesequen
es vn, wn, zn de�ned byv0=1, v1=2, v2=3 vn = �3vn�1 + 2vn�2 + vn�3w0=1, w1=2, w2=3 wn = (wn�1 + wn�2 + wn�3)=3z0=1, z1=2 zn = zn�2
an not be UR sequen
es sin
e vn leads to negative values, the wn values arenot integers, and for zn, R=2 but a1 = 0. For similar reasons, the sequen
es2, 3, 4, 8, 16, 32, 64, 128,...1, 5, 7, 9, 11, 33, 99, 990, 9900, 99000, 990000...are (ultimately) linear re
urent sequen
es that are not UR sequen
es be
ause ofthe required minimality of R.A UR sequen
e (un)n2N of order R will be noted [ V ; A ℄ where V is the ve
tor(u1; :::; uR) of the �rst R terms of (un)n2N and A is the ve
tor (a1; ::; aR) of theR 
oeÆ
ients in the re
uren
e relation. For instan
e the UR sequen
e de�nedby u0=1, u1=2, un = 3un�1 + 4un�2 is noted [ (1; 2) ; (3; 4) ℄.De�ninition 3. The Hankel matrix with size P of a sequen
e (un)n2N is thesquare matrix of size P whose element at row i, 
olumn j is ui+j�2.4



De�ninition 4. The Hankel dimension of a UR sequen
e (un) is the smallestinteger D su
h that for k � D the Hankel matrix with size k of (un)n2N have
onstant rank equal to D. This dimension will be noted dimH( (un) ).As an example, let un be the sequen
e de�ned by un = 5n2 + 3n+ 2 ; then the�rst values of un are 2; 10; 28; 56; 94; 142; 200:::. So the Hankel matri
es of unwith size 1, 2, 3, 4 are( 2 ) � 2 1010 28 � 0� 2 10 2810 28 5628 56 94 1A 0BB� 2 10 28 5610 28 56 9428 56 94 14256 94 142 200 1CCAwhose determinant are respe
tively 2, -44, -1000, 0 and whose rank are respe
-tively 1,2,3,3. Sin
e un is a polynom in n of degree 2, it satis�es the unilinearre
uren
e relation un = 3un�1�3un�2+un�3. Then for k > 3 the Hankel matrixwith size k of un have zero determinant and rank 3. Hen
e dimH( (un) ) = 3.Remark : Please note that the Hankel dimension is not de�ned as the size ofthe �rst Hankel matrix whose determinant is 0 for we want a "stable" result.To understand our 
hoi
e, please 
onsider the following example : let (un) bethe sequen
e de�ned by the fun
tionn ! 1120n5 + 18n3 + 1315n+ 1The �rst values of un are 1; 2; 4; 9; 21; 47; 98; 190; 345 whi
h 
orresponds to theParikh representationL = (1,0,0,0,0,0) M = 0BBBBBB� 1 1 0 0 0 00 1 1 0 0 00 0 1 1 0 00 0 0 1 1 10 0 0 0 1 10 0 0 0 0 1
1CCCCCCAThe �rst 8 Hankel determinants are 1,0,-1,4,-3,-1,0,0 misleading to apossible dimension of 2 whereas the �rst Hankel ranks are 1,1,3,4,5,6,6,6giving the 
orre
t value dimH( (un) ) = 6.Using two 
onse
utive determinants whose value is zero is also not a 
orre
tde�nition. Consider the polynomial whose value at n is140320n8� 13360n7+ 72880n6� 1240n5+ 1675760n4+ 53480n3+ 472310080n2+ 331840n+1Its �rst values are 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003... The twelve �rstHankel determinants are 1, 1, -2, 0, 0, -2, -3, -1, 1, 0, 0, 0.. and the �rstHankel ranks are 1, 2, 3, 3, 4, 6, 7, 8, 9, 9, 9... 
orresponding to the 
orre
tvalue dimH( (un) ) = 9 sin
e we used a matrix of size 9 to build this example.5



3. Main theoremsTheorem 1. The lengths sequen
e of an L system is an LG sequen
e whoseParikh dimension is the size of the alphabet.Proof. Let L be an L system, T the size of its alphabet s1,...sT , A its axiomand R the ve
tor (1; 1:::1) of length T . Let Mf be the matrix of the indu
edmorphism, that is, the matrix su
h that its i-th line is the 
ounting ve
torfor the rewriting of the i-th symbol : Mf (i; j) = �j if f(si) = Q s�jj . It iseasy to 
he
k that Cv( f(si) ) = Cv( si ):Mf . Then, sin
e f is a morphism,Cv( f(w) ) = Cv(w ):Mf and by indu
tion, with Cv(A ) = Cv(A ):M0f one
an 
on
lude that Cv( fn(A) ) = Cv(A ):Mnf . Now, jwj = jCv(w )j = Cv(w ):Rso un = jfn(A)j = Cv(A ):Mnf :R. }Corollary. Every LG sequen
e (un) indu
es an L system L su
h that thelengths sequen
e of L is (un).Proof. If un = L : Mn : R then de�ne the axiom A as the 
anoni
al word whose
ounting ve
tor is L and take for the rewriting of i-th symbol si the 
anoni
alword whose 
ounting ve
tor is the i-th line of M . }So from now on, we will 
all Parikh representation of an L system the 
ouple(L;M) where L and M are de�ned as in the 
orollary. It is immediate that twoL systems with the same alphabet and whose rules di�er only by the order ofthe symbols share the same Parikh representation.Theorem 2. Let (wn) be a �nite sequen
e of t+1 words whose alphabet has tsymbols and whose lengths sequen
e is not de
reasing. It is de
idable whetherthere exists at least one L system whose words sequen
e is (wn). Moreover, ifthere exists only one su
h L system, it 
an be e�e
tively and easily 
onstru
ted.Proof. Let Vi be the 
ounting ve
tor of wi, M1 the square matrix of size t whoselines are V1; V3:::Vt, and let M2 be the square matrix of size t whose lines areV2; V3:::Vt+1. Sin
e � = f(�) implies Cv(�) = Cv(�)Mf , if there is an L systemwhose words sequen
e is (wn) then the matrix M of its morphism satis�es thet2 equations Vi+1 = ViM so M 
an be 
omputed by M�11 M2. So our problemis equivalenta) to de
ide if a linear integer numeri
 matrix system has at least one nonnegative integer solution Mb) to �nd, whenever su
h a solution exists, an L system whose Parikh rep-resentation is (w0;M) that gives exa
tly the words ti.Condition a) is a simple linear algebra problem and 
ondition b) 
an be doneby trying all the possibilities on the symbols of the alphabet 
ompatible withthe words. This pro
ess is �nite sin
e ea
h rewriting rule has �nite length.}6



Remark : Every matrix solution may not be an a

eptable solution if the sym-bols for the words generated by the L system are not at the same position as inthe words wi. For instan
e, 
onsider the following sequen
e of 5 words :dad; dbad; d
dbad; ddbd
dbad; dd
dddbd
dbad; dddbddd
dddbd
dbadwhose alphabet has t=4 symbols. The �rst word w0 has the 
ounting ve
torCv(w0)=(1,0,0,2). The se
ond 
ounting ve
tor is (1; 1; 0; 2) and the �ve �rstwords lead to the four equations Cv(wi+1) = Cv(wi)M whose unique solutionis the matrix M = 0BB� 1 1 0 00 0 1 10 1 0 10 0 0 1 1CCAThus a rewrites to a word whose 
anoni
al form is a b (this may be either a b orb a), b may be rewritten either as 
 d or as d 
, 
 may be rewritten either as b dor as d b and d rewrites to d. Now, the �rst o

uren
e of symbol b has position2 in word w0, just after d. Sin
e rule 4 has length 1 and rule 2 has length 2, brewrites as symbols 2 and 3 of word w1, that is, b ! 
 d. Similarly, a rewritesas symbols 4 and 5 of word w1 whi
h are b a and �nally, 
 rewrites to d b. It iseasy to 
he
k that with w0 as axiom, one gets the same other words ti.Now, if w0 had been add instead of dad, the equations would have been thesame but M would not be an a

eptable solution.Theorem 3. If (un)n2N is a LG sequen
e then (un)n2N is a UR sequen
e anddimR( (un) ) � dimP ( (un) )Proof. See Appendix.We 
an not say better than dimR( (un) ) � dimP ( (un) ) sin
e for our examplefollowing de�nition 1, dimR( (un) ) = 1, dimP ( (un) )=3 and for the Fibona

isequen
e dimR( (un) ) = 2, dimP ( (un) )=2.Theorem 4. If (un) is a UR sequen
e then dimH( (un) ) = dimR( (un) ) + 1.Proof. See Appendix.Theorem 5. If (un)n2N is a LG sequen
e with Parikh representation (L,M)then dimH( (un) ) � dimP ( (un) )Proof. See Appendix.Remark : It would be tempting (sin
e it is the 
ase for a lot of examples) to thinkthat dimP ( (un) ) = dimH( (un) ) +1 but unfortunately, here is a 
ounter-example: un = n3=6�n2=2+4n=3+ 1 whose �rst values are 1,2,3,5,9,16,27,43.dimH( (un) ) = 4 sin
e un is a polynomial of degree 3 but there is no L systemwith an alphabet of 4 symbols whose length sequen
e is (un).7



The proof is easy but lengthy: sin
e the �rst length is 1, the axiom is redu
edto one symbol, say a. Sin
e the se
ond length is 2, a rewrites to a a, a b, b b orb 
. a! a a is not possible for it would give a third length of 4 and the 
orre
tlength is 3. Let's try the se
ond solution : a ! a b ; the third legnth is 4 andsin
e we have already ab, b rewrites to only symbol. It 
an't be a so try b, 
 et
.Using a 
omputer program to be sure that no 
ase is forgotten, it is possible to
on
lude that for this example dimP ( (un) ) > dimH( (un) ) +1.Theorem 6. For every LG sequen
e there exists at least one Parikh repre-sentation with minimal size.Proof. Let un be a LG sequen
e and 
onsider the set S of all L systems whoselengths sequen
e is un. There is at least one element in S, namely the 
anoni
alrepresentation [L;M ℄ indu
ed by (L;M). S is a �nite set sin
e the the equationsun = jfn(A)j are integer relations on positive unknonws of �xed sums. So theset fdimP (L);L 2 Sg has a smaller element. }Remark: The theorem does not reveal how to build the 
anoni
al representation[L;M ℄. Neither does it give the exa
t dimension of this representation. Thereason of it is simple: to deal with only lengths sequen
es of words is mu
hharder than to work with words sequen
es and 
an lead only to rules in 
anoni
alform. However, we have found some partial solutions mainly in the polynomial
ase and when the inequality of theorem 5 redu
es to an equality. For these
ases, the solution with smallest dimension 
an be exhibited from a sometimestedious 
omputation, espe
ially for polynomials but to our knowledge, a generalalgorithm to get it is still to be found. To get a glimpse of the diÆ
ulty ofthe problem, we leave it to the reader to prove the following assumptions asexer
ises.Exer
ise 1.The LG lengths sequen
e n! (n+1)t is given, in the smallest dimension t+1,by the left ve
tor L su
h that L1 = 1, Li = 0 for i > 1 and the matrix M su
hthat M(1; 1) =1, if i > j then M(i; j) = 0, else if i = 1 then M(i; j) = Cj�2tand �nally else M(i; j) = Cj�it+1�i where the value Cpn is the 
lassi
al binomial
oeÆ
ient n!=p!(n� p)!.

8



LemmaIf sk(n) = nXj=1 jk then (n+ 1)p = 1 + p�1Xk=0 Ckp sk(n) for k � 0 and n � 1.ProofDevelop (n+ 1)p as (a+ b)p and take the �rst term np from the sum. So(n+ 1)p = np + pXk=1 Ckp np�k = np + p�1Xk=0 Ckp nkDo the same for np, (n� 1)p,...2p and add term to term. One gets(n+ 1)p = 1 + nXj=1 Ckp  p�1Xk=0 jk!Now, permute the two sigmas : (n + 1)p = 1 + p�1Xk=0 Ckp 0� nXj=1 jk1A. whi
h iswhat we wanted, using the de�nition of sk(n). }Solution to Exer
ise 1From the de�nition of the matrix, M is triangular, with only 0 under the diag-onal. }

9



Exer
ise 2.The set of LG sequen
es n! p(n) su
h that the smallest representation of p(n)is found by the following method in
ludes all polynomials p(n) =Pdi=0 aini ofdegree d whose 
oeÆ
ients are either i) all positive or ii) all positive but ad�1.The method is: take L as the ve
tor (1; 0; 0:::a0 � 1) of length d+ 1 or by a0 ifd=0. De�ne M as a square matrix of size d + 1 by M(i; i)=1, M(i; i + 1)=1,M(i; d+ 1)= -1+ Pdj=i L(i; j)aj and by 0 anywhere else, where the L fun
tionis de�ned by L(i; j) =Pik=1(�1)i+kCki kj for j > 0 and L(i; 0) = 0.The following theorem and its 
orollaries are easy to prove by a dire
t 
al
ulus.Theorem 7. Let S(T) be the set of the LG sequen
es whose Parikh dimensionis less than T, U(T) be the set of the UR sequen
es whose Hankel dimension isless than T, let S be the union of all S(T) and U the union of all U(T). Morever,if (un)n2N=[G1;M1℄ and (vn)n2N=[G2;M2℄ are in S, thena) (un + vn)n2N = [ 
on
(G1; G2) ; blad(M1;M2) ℄,b) (a:un)n2N = [ a:G1 ; M1 ℄ for a 2 N ,
) (un:vn)n2N = [ (G1 
G2) ; M1 
M2 ℄where 
on
 stands for ve
tor 
on
atenation, blad is the blo
k addition of matri
esand 
 is the usual tensor produ
t.Corollary 1. S and U are stable for the addition, the multipli
ation by a pos-itive 
onstant and for Hadamard's multipli
ation (term to term multipli
ation).Corollary 2. If dimH( (un) ) = du and dimH( (vn) ) = dv thena) dimH( (un) + (vn) ) � du + dv,b) dimH( k:(un) ) = du,
) dimH( (un):(vn) ) � du:dv .4. A biologi
al detailed exampleConsider the following words sequen
e, whi
h 
omes, slightly modi�ed from Lin-denMayer's Mathemati
al models (see [Lind68℄) for the red alga Callithamnionroseum.word 1 : 1 1 3 1 4word 2 : 1 1 1 4 1 5 4word 3 : 1 1 1 5 4 1 6 5 4word 4 : 1 1 1 6 5 4 1 7 6 5 4word 5 : 1 1 1 7 6 5 4 1 8 x 2 y 7 6 5 4word 6 : 1 1 1 8 x 2 y 7 6 5 4 1 8 x 1 3 y 8 x 2 y 7 6 5 410



word 7 : 1 1 1 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 8 : 1 1 1 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 5 4 y 8 x 1 1 4 y8 x 1 3 y 8 x 2 y 7 6 5 4word 9 : 1 1 1 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 6 54 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 10 : 1 1 1 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 54 1 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3y 8 x 2 y 7 6 5 4word 11 : 1 1 1 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 13 y 8 x 2 y 7 6 5 4 1 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 11 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 12 : 1 1 1 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 11 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 8 x 1 3 y 8 x 2y 7 6 5 4 y 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4Yokomori's algorithm ([Yoko92℄) to identify the L system that produ
es thesewords sin
e "PDOL languages are identi�able in the limit from positive data"does not simply apply here, but our method of theorem 2 does not give eitherdire
tly a solution : M1 has determinant 0. But sin
e the linear equations
orresponding to Vi+1 = ViM have many real solutions, one 
ould use a fewnearly blind trials or a systemati
 
omputer programs to dete
t the integersolution.However, it is possible to do better and qui
ker with the help of a little extrainformation to get a straightforward solution. We are using a bran
hing stru
-ture, modeled by a bra
keted grammar (see [Lind71℄): 8 and y or x and y arethe only 
andidates as bra
keting symbols that 
an read as [ and ℄ respe
tively.The fa
t that the stru
ture is api
al (see [PrKa96℄) is not usefull, though. Sowe know already the last two lines of the solution matrix for x and y are thelast two symbols of the aphabet. Using this partial information and simplifyingthe equations (su
h as u+v=0 leads only to u=v=0, 2u+3v+w=1 leads onlyto u=v=0, w=1...), our resolution leads to only one simple parametri
 rule,namely 1! 1i with i > 0 and two equations of the form u+ v=1 whi
h have tobe solved with non negative integers. So it is qui
k and easy to �nd the 
orre
tten rules 1 ! 1 2 ! 1 33 ! 1 4 4 ! 5 45 ! 6 6 ! 77 ! 8 x 2 y 8 ! 8x ! x y ! yand to use the �rst word 1 1 3 1 4 as axiom.The resolution of this problem takes a 
ouple of se
onds with Maple, even on aP.C. This is a great improvement, 
ompared to brute 
ombinatorial explorationfor the 8 rules and 8 symbols.Now, let's try to see if we are able to derive the same solution knowing only the11



numbers of symbols for ea
h word, that is, using only the sequen
e5; 7; 9; 11; 16; 25; 36; 49; 64; 81; 103; 134without even knowing that we have 10 symbols (for now we don't even knowthat the stru
ture is bra
keted). Even with so few values the unilinear relationis dete
ted with an dimR dimension of 7 :un = 2un�1 � un�2 + un�6 � un�7 for n > 7But the 
losed form is not a polynomial and so, without a mathemati
s resolu-tion, only a brute "try and 
he
k" algorithm that tries all matri
es of size 7, 8,9, 10, 11 is able to �nd the Parikh representation whose left ve
tor isV = � 3 0 1 1 0 0 0 0 0 0 �and whose matrix is
M =

0BBBBBBBBBBBBBB�
1 0 0 0 0 0 0 0 0 01 0 1 0 0 0 0 0 0 01 0 0 1 0 0 0 0 0 00 0 0 1 1 0 0 0 0 00 0 0 0 0 1 0 0 0 00 0 0 0 0 0 1 0 0 00 1 0 0 0 0 0 1 1 10 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCAWith this solution, unique up to a permutation of symbols the biologist 
an behappy: there are only three 
ouples of possible bra
keting symbols, the matrixhas a small size (and for those who know the origin of the problem, it is the
orre
t minimal size). There is some more interpretation to be done on this
anoni
al solution, but this is the best that 
omputers program 
an do withoutextra (biologi
al) knowledge. Please note that with a "simpler" sequen
e withthe same dimR dimension, namely 3; 7; 15; 31; 63; 127; 254; 501; 967; 1815; 3301the method des
ribed as exer
ise 2 is able to �nd immediately a 
orre
t Parikhrepresentation whi
h isV = � 1 0 0 0 0 0 0 2 �M = 0BBBBBBBBBB�
1 1 0 0 0 0 0 30 1 1 0 0 0 0 30 0 1 1 0 0 0 30 0 0 1 1 0 0 30 0 0 0 1 1 0 30 0 0 0 0 1 1 20 0 0 0 0 0 1 10 0 0 0 0 0 0 1

1CCCCCCCCCCA12



5. Con
lusionWe dealt with two problems, that is, to �nd a parallel grammar with a minimalalphabet given either a �nite sequen
e of words or a sequen
e of numbers. Wehave shown that for the �rst problem, it is de
idable to know if there is a solutionand we have also given a method to 
ompute it (whi
h has been implementedwith Maple on our 
omputers). For the se
ond problem, we had to restri
tourselves to a spe
ial 
lass of sequen
es, 
alled LG sequen
es and our existen
etheorem is not 
onstru
tive. However, for some 
ases we have partial formulasthat are programmable whi
h we showed and used in the examples. Combinedwith geometri
 programs to visualize biologi
al data, these methods of inferen
eand heuristi
s are new usefull modelizing tools, espe
ially for biologists.Referen
es[Lind68℄ A. LindenmayerMathemati
al models for 
ellular intera
tion in development.Journal of Theoreti
al Biology; 18 :280-315, 1968.[Lind71℄ A. LindenmayerDevelopmental systems without 
ellular intera
tion,their languages and grammar.Journal of Theoreti
alBiology; 30 :455-484, 1971.[PrKa96℄ P. Prusinkiewi
z & Lila KariSubapi
al bra
keted L-systems, Grammars and theirappli
ation to 
omputer s
ien
e.Le
ture Notes in Computer S
ien
e, volume 1073 :550-564.Springer-Verlag 1996.[RoSa80℄ G. Rozenberg et A. SalomaaThe mathemati
al theory of L systems.A
ademi
 Press, 1980.[Salo73℄ A. SalomaaFormal Languages.A
ademi
 Press, 1973.[SaSo78℄ A. Salomaa, M. SoittolaAutomata-Theoreti
 Aspe
ts of Formal Power Series.Springer-Verlag, 1978.[Yoko92℄ T. YokomoriIndu
tive inferen
e of 0L Languages.Lindenmayer Systems, Impa
ts on Theoreti
al Computer S
ien
e,13



Computer Graphi
s and Developmental Biology.Springer-Verlag, 1992.[SaSo78℄ A. Salomaa, M. SoittolaAutomata-Theoreti
 Aspe
ts of Formal Power Series.Springer-Verlag, 1978.
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Appendix
Proof of theorem 3.If (un)n2N is a LG sequen
e with Parikh representation (L;M) then let P be the
hara
teristi
 polynomial of M , 
all ai its 
oeÆ
ients and let D = dimP ( (un) ).Sin
e P (X) = det(X:Id�M), P has degree D, the ai are integers and P has leading
oeÆ
ient 1. Cayley-Hamilton's theorem states that M is a root of P soMD + D�1Xi= 0 ai : M i = 0Multiplying both sides on the left by L and on the right by R, one getsL : MD : R + D�1Xi= 0 ai : L : M i : R = 0and sin
e L : M i : R = ui, we haveuD = D�1Xi=1 �ai : un�iso (un) is UR with order at most D = dimP ( (un) ).}Proof of theorem 4.Let R = dimR( (un) ) and d = dimH( (un) ). The relation un = RXk=1 ak : un�k forn > R shows that the lines R + 1, R + 2... of Hd with d > R and i > 0 are a linear
ombination (CL) of the previous lines.So the determinant of Hd with d > R is 0 and its rank is 
onstant equal to R + 1.When
e dimH( (un) ) = dimR( (un) ) + 1 results from minimality of dimH( (un) )and dimR( (un) ). }Proof of theorem 5.Let d = dimH( (un) ) and 
all Hd its Hankel matrix of size d. Sin
e det(Hd+1) = 0,the last line of Hd is a linear 
ombination (LC) of the previous lines. So the �rst termof it, ud�1 is a LC of u0; u1:::ud�2. But un = L : Mn : R for all n, so, multiplying byM i, we have that Md+i�1 is a LC of M i;M i+2:::M i+d�2 for all i whi
h means thatud+i�1 is a LC of ui; ui+1:::ui+d�2. So (un) is UR with dimR( un ) � d� 1. }
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