
Reovering minimal L systemsfrom words and lengths sequenesG. Hunault, Universit�e d'AngersL. Piouleau, AngersCovered topis. - Formal languages- Algorithms for biologial omputing- Lindenmayer grammars, L systemsMotivations. Working for many years with biologists of the national re-searh institute INRA, we have met on several oasions the need for modelingtools that would build parallel grammars from observations data.Main results and their signi�ane. First, it is deidable to build a mini-mal parallel grammar from a sequene of words (with a onstrutive proof). Sobiologists have a tool that automates the making of suh a grammar. Seond,it is possible to build a minimal parallel grammar from a sequene of numbers(interpreted as words lengths); the proof is not onstrutive but for some poly-nomial sequenes (whih are very ommon for biologists) we have found partialformulas, here again easily programmable, to obtain one (if not the only one)minimal parallel grammar orresponding to the data.Abstrat. Formal languages are sets of words. Classial generative deviesfor suh languages are grammars, either sequential or parallel. We deal herewith speial parallel propagating deterministi grammars alled Lindenmayergrammars or "L systems" for short and we will show how to build suh gram-mars with a minimal alphabet given the words or their length at eah rewritingstep. Setion 1 is devoted to notations and de�nitions for grammars whereassetion 2 does the same for "unilinear" reurent sequenes of positive integers.Setion 3 gives our main theorems and setion 4 shows an appliation of thetheory therefore giving to biologists a way to model and extend biologial data.



1. Languages and GrammarsLet E be an alphabet, that is, a set whose elements are alled symbols. A wordm on E is a �nite sequene of symbols of E. The empty sequene, also known asthe empty word will be denoted by !. The set of all words on E is denoted byW (E). The onatenation of two sequenes (one sequene following the other)endows W (E) with the struture of a non abelian semigroup, whose neutralelement is !. A language on E is a subset of W (E). It is usual to note an the(on)atenation of n onseutive symbols a.On way to build suh languages, possibly in�nite, is to use rewriting systems. Arewriting system S on E is a triple (E;A;R) where A is a word on an alphabetE alled the axiom and R a �nite set of ouples (ai; bi) of words on E alledrewriting rules and usually written ai ! bi. Applying the same rule for allourenes of a word gives parallel rewriting. Applying possibly di�erent rulesfor the ourenes of the same word gives sequential rewriting. For instane,parallel rewriting of a a with the two rules a ! b and a !  leads only to b bor   whereas sequential rewriting with the same rules leads also to b  and  b.If a ! x1, x1 ! x2,... xn ! b is a sequene of rewritings then b is said to bederived from a, denoted by a ) b. The language generated by the rewritingsystem S = (A;R) is the set of all words that an be derived from the axiom :L(S) = f m 2 W (E) ; A) m gClassial formal languages distinguish between "good" words build upon ter-minal symbols and "bad" or temporary words build upon terminal and nonterminal symbols. Thus a generative phrase struture grammar is a quadrupleG = (T ;N ; B;R) where T is the set of terminal symbols,N the set of non termi-nal symbols, B is a (non terminal beginning) symbol, R a set of sequential rules.The language generated by G is de�ned by the set of words built upon terminalsymbols, derived from the beginning symbol : L(G) = fm 2W (T ) ; B ) mg.A propagating deterministi Lindenmayer system with no interation (PD0L)or L system for short in this artile is a triple G = (S; A;R) where S is a setof symbols alled alphabet, A is a word alled the axiom, R a set of parallelrules suh that- no rule has ! as right hand side,- eah left hand side of the rule onsists of exatly one symbol,- there is one and only one rule for eah symbol.In other words, an L system is the parallel equivalent of a deterministi ontextfree non erasing traditional grammar. It has to be noted that a PD0L with analphabet of n symbols si is de�ned by exatly n rules (ri) : si ! ti where eahword ti has length at least 1. From now on, we will suppose that the alphabetis ordered.Being deterministi, not erasing and without ontext, an L system produesonly one word at eah rewriting step. 2



For suh grammars, the rewriting rules de�ne a morphism f on W (S): letf(t1t2:::tn) = f(t1)f(t2):::f(tn) where the ti are elements of the alphabet; fn(A)will denote the n-th rewriting of the axiom with the usual onvention f0(A) = A.The words sequene of the L system is de�ned by the funtion n ! fn(A)and its lengths sequene is then de�ned by the funtion n ! jfn(A)j wherejmj is the length of the word m, that is, its number of symbols. In a similarway, for a sequene (wn) of words, the assoiated lengths sequenes is (jwnj).Let s1, s2...sp be the ordered elements of the alphabet. The anonial form ofa word m is sn1(m)1 sn2(m)2 :::snp(m)p where ni(m) is the number of ourenes ofsymbol si in m. One may see this anonial form as a kind of fatorization. Theanonial words sequene is the sequene of the words in anonial form.The vetor (n1(m); n2(m); :::np(m)) is alled the ounting vetor of the wordm, usually denoted by Cv(m).For instane the L system over the alphabet fa; bgwith axiom a and the two rulesa ! b, b! ba produes suessively the words b, ba, bab, babba, babbabab... Sothe anonial words sequene is b, ab, ab2, a2b3, a3b5 and the lengths sequene(inluding the axiom) gives the Fibonai numbers 1,1,2,3,5,8... whih verifythe linear relation Fn = Fn�1 + Fn�2 with F (0) = F (1) = 1. The induedmorphism is here de�ned by f(a) = b, f(b) = ba.For further details on formal languages and L systems, see [SaLo73,RoSa80℄.2. Sequenes and GrammarsFor the rest of this artile, every sequene of numbers will be a sequene ofstritly positive numbers whih is not dereasing exept expliity mentioned.De�ninition 1. A sequene of numbers (un)n2N is alled a Lindenmayergrowth sequene (or LG) if there exist an integer T , a square matrixM of size Twith integer positive oeÆients and a vetor L of T non negative integers suhthat 8n; un = L : Mn : Rwhere R is the olumn-vetor (1; 1:::1) of length T . The ouple (L,M) is alleda Parikh representation of (un)n2N . The size T is alled the Parikh dimensionof the sequene and will be noted dimP ( (un) ).It is a restrition of the lassial of the de�nition of a IN-rational funtion usedin Formal Power Series Theory. See for instane [SaSo78,RoSa80℄.For instane, the sequene de�ned by L = (1; 0; 0) and M = 0� 2 1 00 2 10 0 3 1Ais a LG sequene of Parikh dimension 3 whose values orrespond to n 7! 3n.3



De�ninition 2. A sequene (un)n2N is alled an unilinear reurent sequene(or UR) of order R if there exists a minimal positive integer R suh that9a1; a2:::aR 2 ZZ ; a1 6= 0 and 8n; n > R ) un = RXk=1 ak : un�kHere again, it is a restrition of the de�nition of a lassial linear reurentsequene with onstant oeÆients where we impose� minimality (for we will want minimal alphabets),� positivity (in order to deal with word lengths),� integer oeÆients (for they lead to ounts of letters),� divisibility (sine un is the length number n).The integer R is alled the reurene dimension of the sequene and will benoted dimR( (un) ).The ondition a1 6= 0 is there to ensure that we use the same relation forall ui with a oherent beginning (look at zn underneath). So the sequeneun = 3un�1 + 2un�2 � un�3 may be UR depending on u0, u1 and u2 but thesequenes vn, wn, zn de�ned byv0=1, v1=2, v2=3 vn = �3vn�1 + 2vn�2 + vn�3w0=1, w1=2, w2=3 wn = (wn�1 + wn�2 + wn�3)=3z0=1, z1=2 zn = zn�2an not be UR sequenes sine vn leads to negative values, the wn values arenot integers, and for zn, R=2 but a1 = 0. For similar reasons, the sequenes2, 3, 4, 8, 16, 32, 64, 128,...1, 5, 7, 9, 11, 33, 99, 990, 9900, 99000, 990000...are (ultimately) linear reurent sequenes that are not UR sequenes beause ofthe required minimality of R.A UR sequene (un)n2N of order R will be noted [ V ; A ℄ where V is the vetor(u1; :::; uR) of the �rst R terms of (un)n2N and A is the vetor (a1; ::; aR) of theR oeÆients in the reurene relation. For instane the UR sequene de�nedby u0=1, u1=2, un = 3un�1 + 4un�2 is noted [ (1; 2) ; (3; 4) ℄.De�ninition 3. The Hankel matrix with size P of a sequene (un)n2N is thesquare matrix of size P whose element at row i, olumn j is ui+j�2.4



De�ninition 4. The Hankel dimension of a UR sequene (un) is the smallestinteger D suh that for k � D the Hankel matrix with size k of (un)n2N haveonstant rank equal to D. This dimension will be noted dimH( (un) ).As an example, let un be the sequene de�ned by un = 5n2 + 3n+ 2 ; then the�rst values of un are 2; 10; 28; 56; 94; 142; 200:::. So the Hankel matries of unwith size 1, 2, 3, 4 are( 2 ) � 2 1010 28 � 0� 2 10 2810 28 5628 56 94 1A 0BB� 2 10 28 5610 28 56 9428 56 94 14256 94 142 200 1CCAwhose determinant are respetively 2, -44, -1000, 0 and whose rank are respe-tively 1,2,3,3. Sine un is a polynom in n of degree 2, it satis�es the unilinearreurene relation un = 3un�1�3un�2+un�3. Then for k > 3 the Hankel matrixwith size k of un have zero determinant and rank 3. Hene dimH( (un) ) = 3.Remark : Please note that the Hankel dimension is not de�ned as the size ofthe �rst Hankel matrix whose determinant is 0 for we want a "stable" result.To understand our hoie, please onsider the following example : let (un) bethe sequene de�ned by the funtionn ! 1120n5 + 18n3 + 1315n+ 1The �rst values of un are 1; 2; 4; 9; 21; 47; 98; 190; 345 whih orresponds to theParikh representationL = (1,0,0,0,0,0) M = 0BBBBBB� 1 1 0 0 0 00 1 1 0 0 00 0 1 1 0 00 0 0 1 1 10 0 0 0 1 10 0 0 0 0 1
1CCCCCCAThe �rst 8 Hankel determinants are 1,0,-1,4,-3,-1,0,0 misleading to apossible dimension of 2 whereas the �rst Hankel ranks are 1,1,3,4,5,6,6,6giving the orret value dimH( (un) ) = 6.Using two onseutive determinants whose value is zero is also not a orretde�nition. Consider the polynomial whose value at n is140320n8� 13360n7+ 72880n6� 1240n5+ 1675760n4+ 53480n3+ 472310080n2+ 331840n+1Its �rst values are 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003... The twelve �rstHankel determinants are 1, 1, -2, 0, 0, -2, -3, -1, 1, 0, 0, 0.. and the �rstHankel ranks are 1, 2, 3, 3, 4, 6, 7, 8, 9, 9, 9... orresponding to the orretvalue dimH( (un) ) = 9 sine we used a matrix of size 9 to build this example.5



3. Main theoremsTheorem 1. The lengths sequene of an L system is an LG sequene whoseParikh dimension is the size of the alphabet.Proof. Let L be an L system, T the size of its alphabet s1,...sT , A its axiomand R the vetor (1; 1:::1) of length T . Let Mf be the matrix of the induedmorphism, that is, the matrix suh that its i-th line is the ounting vetorfor the rewriting of the i-th symbol : Mf (i; j) = �j if f(si) = Q s�jj . It iseasy to hek that Cv( f(si) ) = Cv( si ):Mf . Then, sine f is a morphism,Cv( f(w) ) = Cv(w ):Mf and by indution, with Cv(A ) = Cv(A ):M0f onean onlude that Cv( fn(A) ) = Cv(A ):Mnf . Now, jwj = jCv(w )j = Cv(w ):Rso un = jfn(A)j = Cv(A ):Mnf :R. }Corollary. Every LG sequene (un) indues an L system L suh that thelengths sequene of L is (un).Proof. If un = L : Mn : R then de�ne the axiom A as the anonial word whoseounting vetor is L and take for the rewriting of i-th symbol si the anonialword whose ounting vetor is the i-th line of M . }So from now on, we will all Parikh representation of an L system the ouple(L;M) where L and M are de�ned as in the orollary. It is immediate that twoL systems with the same alphabet and whose rules di�er only by the order ofthe symbols share the same Parikh representation.Theorem 2. Let (wn) be a �nite sequene of t+1 words whose alphabet has tsymbols and whose lengths sequene is not dereasing. It is deidable whetherthere exists at least one L system whose words sequene is (wn). Moreover, ifthere exists only one suh L system, it an be e�etively and easily onstruted.Proof. Let Vi be the ounting vetor of wi, M1 the square matrix of size t whoselines are V1; V3:::Vt, and let M2 be the square matrix of size t whose lines areV2; V3:::Vt+1. Sine � = f(�) implies Cv(�) = Cv(�)Mf , if there is an L systemwhose words sequene is (wn) then the matrix M of its morphism satis�es thet2 equations Vi+1 = ViM so M an be omputed by M�11 M2. So our problemis equivalenta) to deide if a linear integer numeri matrix system has at least one nonnegative integer solution Mb) to �nd, whenever suh a solution exists, an L system whose Parikh rep-resentation is (w0;M) that gives exatly the words ti.Condition a) is a simple linear algebra problem and ondition b) an be doneby trying all the possibilities on the symbols of the alphabet ompatible withthe words. This proess is �nite sine eah rewriting rule has �nite length.}6



Remark : Every matrix solution may not be an aeptable solution if the sym-bols for the words generated by the L system are not at the same position as inthe words wi. For instane, onsider the following sequene of 5 words :dad; dbad; ddbad; ddbddbad; dddddbddbad; dddbddddddbddbadwhose alphabet has t=4 symbols. The �rst word w0 has the ounting vetorCv(w0)=(1,0,0,2). The seond ounting vetor is (1; 1; 0; 2) and the �ve �rstwords lead to the four equations Cv(wi+1) = Cv(wi)M whose unique solutionis the matrix M = 0BB� 1 1 0 00 0 1 10 1 0 10 0 0 1 1CCAThus a rewrites to a word whose anonial form is a b (this may be either a b orb a), b may be rewritten either as  d or as d ,  may be rewritten either as b dor as d b and d rewrites to d. Now, the �rst ourene of symbol b has position2 in word w0, just after d. Sine rule 4 has length 1 and rule 2 has length 2, brewrites as symbols 2 and 3 of word w1, that is, b !  d. Similarly, a rewritesas symbols 4 and 5 of word w1 whih are b a and �nally,  rewrites to d b. It iseasy to hek that with w0 as axiom, one gets the same other words ti.Now, if w0 had been add instead of dad, the equations would have been thesame but M would not be an aeptable solution.Theorem 3. If (un)n2N is a LG sequene then (un)n2N is a UR sequene anddimR( (un) ) � dimP ( (un) )Proof. See Appendix.We an not say better than dimR( (un) ) � dimP ( (un) ) sine for our examplefollowing de�nition 1, dimR( (un) ) = 1, dimP ( (un) )=3 and for the Fibonaisequene dimR( (un) ) = 2, dimP ( (un) )=2.Theorem 4. If (un) is a UR sequene then dimH( (un) ) = dimR( (un) ) + 1.Proof. See Appendix.Theorem 5. If (un)n2N is a LG sequene with Parikh representation (L,M)then dimH( (un) ) � dimP ( (un) )Proof. See Appendix.Remark : It would be tempting (sine it is the ase for a lot of examples) to thinkthat dimP ( (un) ) = dimH( (un) ) +1 but unfortunately, here is a ounter-example: un = n3=6�n2=2+4n=3+ 1 whose �rst values are 1,2,3,5,9,16,27,43.dimH( (un) ) = 4 sine un is a polynomial of degree 3 but there is no L systemwith an alphabet of 4 symbols whose length sequene is (un).7



The proof is easy but lengthy: sine the �rst length is 1, the axiom is reduedto one symbol, say a. Sine the seond length is 2, a rewrites to a a, a b, b b orb . a! a a is not possible for it would give a third length of 4 and the orretlength is 3. Let's try the seond solution : a ! a b ; the third legnth is 4 andsine we have already ab, b rewrites to only symbol. It an't be a so try b,  et.Using a omputer program to be sure that no ase is forgotten, it is possible toonlude that for this example dimP ( (un) ) > dimH( (un) ) +1.Theorem 6. For every LG sequene there exists at least one Parikh repre-sentation with minimal size.Proof. Let un be a LG sequene and onsider the set S of all L systems whoselengths sequene is un. There is at least one element in S, namely the anonialrepresentation [L;M ℄ indued by (L;M). S is a �nite set sine the the equationsun = jfn(A)j are integer relations on positive unknonws of �xed sums. So theset fdimP (L);L 2 Sg has a smaller element. }Remark: The theorem does not reveal how to build the anonial representation[L;M ℄. Neither does it give the exat dimension of this representation. Thereason of it is simple: to deal with only lengths sequenes of words is muhharder than to work with words sequenes and an lead only to rules in anonialform. However, we have found some partial solutions mainly in the polynomialase and when the inequality of theorem 5 redues to an equality. For theseases, the solution with smallest dimension an be exhibited from a sometimestedious omputation, espeially for polynomials but to our knowledge, a generalalgorithm to get it is still to be found. To get a glimpse of the diÆulty ofthe problem, we leave it to the reader to prove the following assumptions asexerises.Exerise 1.The LG lengths sequene n! (n+1)t is given, in the smallest dimension t+1,by the left vetor L suh that L1 = 1, Li = 0 for i > 1 and the matrix M suhthat M(1; 1) =1, if i > j then M(i; j) = 0, else if i = 1 then M(i; j) = Cj�2tand �nally else M(i; j) = Cj�it+1�i where the value Cpn is the lassial binomialoeÆient n!=p!(n� p)!.
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LemmaIf sk(n) = nXj=1 jk then (n+ 1)p = 1 + p�1Xk=0 Ckp sk(n) for k � 0 and n � 1.ProofDevelop (n+ 1)p as (a+ b)p and take the �rst term np from the sum. So(n+ 1)p = np + pXk=1 Ckp np�k = np + p�1Xk=0 Ckp nkDo the same for np, (n� 1)p,...2p and add term to term. One gets(n+ 1)p = 1 + nXj=1 Ckp  p�1Xk=0 jk!Now, permute the two sigmas : (n + 1)p = 1 + p�1Xk=0 Ckp 0� nXj=1 jk1A. whih iswhat we wanted, using the de�nition of sk(n). }Solution to Exerise 1From the de�nition of the matrix, M is triangular, with only 0 under the diag-onal. }
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Exerise 2.The set of LG sequenes n! p(n) suh that the smallest representation of p(n)is found by the following method inludes all polynomials p(n) =Pdi=0 aini ofdegree d whose oeÆients are either i) all positive or ii) all positive but ad�1.The method is: take L as the vetor (1; 0; 0:::a0 � 1) of length d+ 1 or by a0 ifd=0. De�ne M as a square matrix of size d + 1 by M(i; i)=1, M(i; i + 1)=1,M(i; d+ 1)= -1+ Pdj=i L(i; j)aj and by 0 anywhere else, where the L funtionis de�ned by L(i; j) =Pik=1(�1)i+kCki kj for j > 0 and L(i; 0) = 0.The following theorem and its orollaries are easy to prove by a diret alulus.Theorem 7. Let S(T) be the set of the LG sequenes whose Parikh dimensionis less than T, U(T) be the set of the UR sequenes whose Hankel dimension isless than T, let S be the union of all S(T) and U the union of all U(T). Morever,if (un)n2N=[G1;M1℄ and (vn)n2N=[G2;M2℄ are in S, thena) (un + vn)n2N = [ on(G1; G2) ; blad(M1;M2) ℄,b) (a:un)n2N = [ a:G1 ; M1 ℄ for a 2 N ,) (un:vn)n2N = [ (G1 
G2) ; M1 
M2 ℄where on stands for vetor onatenation, blad is the blok addition of matriesand 
 is the usual tensor produt.Corollary 1. S and U are stable for the addition, the multipliation by a pos-itive onstant and for Hadamard's multipliation (term to term multipliation).Corollary 2. If dimH( (un) ) = du and dimH( (vn) ) = dv thena) dimH( (un) + (vn) ) � du + dv,b) dimH( k:(un) ) = du,) dimH( (un):(vn) ) � du:dv .4. A biologial detailed exampleConsider the following words sequene, whih omes, slightly modi�ed from Lin-denMayer's Mathematial models (see [Lind68℄) for the red alga Callithamnionroseum.word 1 : 1 1 3 1 4word 2 : 1 1 1 4 1 5 4word 3 : 1 1 1 5 4 1 6 5 4word 4 : 1 1 1 6 5 4 1 7 6 5 4word 5 : 1 1 1 7 6 5 4 1 8 x 2 y 7 6 5 4word 6 : 1 1 1 8 x 2 y 7 6 5 4 1 8 x 1 3 y 8 x 2 y 7 6 5 410



word 7 : 1 1 1 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 8 : 1 1 1 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 5 4 y 8 x 1 1 4 y8 x 1 3 y 8 x 2 y 7 6 5 4word 9 : 1 1 1 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 6 54 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 10 : 1 1 1 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 54 1 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3y 8 x 2 y 7 6 5 4word 11 : 1 1 1 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 13 y 8 x 2 y 7 6 5 4 1 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 11 6 5 4 y 8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4word 12 : 1 1 1 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y 8 x 11 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4 1 8 x 1 1 8 x 1 3 y 8 x 2y 7 6 5 4 y 8 x 1 1 8 x 2 y 7 6 5 4 y 8 x 1 1 7 6 5 4 y 8 x 1 1 6 5 4 y8 x 1 1 5 4 y 8 x 1 1 4 y 8 x 1 3 y 8 x 2 y 7 6 5 4Yokomori's algorithm ([Yoko92℄) to identify the L system that produes thesewords sine "PDOL languages are identi�able in the limit from positive data"does not simply apply here, but our method of theorem 2 does not give eitherdiretly a solution : M1 has determinant 0. But sine the linear equationsorresponding to Vi+1 = ViM have many real solutions, one ould use a fewnearly blind trials or a systemati omputer programs to detet the integersolution.However, it is possible to do better and quiker with the help of a little extrainformation to get a straightforward solution. We are using a branhing stru-ture, modeled by a braketed grammar (see [Lind71℄): 8 and y or x and y arethe only andidates as braketing symbols that an read as [ and ℄ respetively.The fat that the struture is apial (see [PrKa96℄) is not usefull, though. Sowe know already the last two lines of the solution matrix for x and y are thelast two symbols of the aphabet. Using this partial information and simplifyingthe equations (suh as u+v=0 leads only to u=v=0, 2u+3v+w=1 leads onlyto u=v=0, w=1...), our resolution leads to only one simple parametri rule,namely 1! 1i with i > 0 and two equations of the form u+ v=1 whih have tobe solved with non negative integers. So it is quik and easy to �nd the orretten rules 1 ! 1 2 ! 1 33 ! 1 4 4 ! 5 45 ! 6 6 ! 77 ! 8 x 2 y 8 ! 8x ! x y ! yand to use the �rst word 1 1 3 1 4 as axiom.The resolution of this problem takes a ouple of seonds with Maple, even on aP.C. This is a great improvement, ompared to brute ombinatorial explorationfor the 8 rules and 8 symbols.Now, let's try to see if we are able to derive the same solution knowing only the11



numbers of symbols for eah word, that is, using only the sequene5; 7; 9; 11; 16; 25; 36; 49; 64; 81; 103; 134without even knowing that we have 10 symbols (for now we don't even knowthat the struture is braketed). Even with so few values the unilinear relationis deteted with an dimR dimension of 7 :un = 2un�1 � un�2 + un�6 � un�7 for n > 7But the losed form is not a polynomial and so, without a mathematis resolu-tion, only a brute "try and hek" algorithm that tries all matries of size 7, 8,9, 10, 11 is able to �nd the Parikh representation whose left vetor isV = � 3 0 1 1 0 0 0 0 0 0 �and whose matrix is
M =

0BBBBBBBBBBBBBB�
1 0 0 0 0 0 0 0 0 01 0 1 0 0 0 0 0 0 01 0 0 1 0 0 0 0 0 00 0 0 1 1 0 0 0 0 00 0 0 0 0 1 0 0 0 00 0 0 0 0 0 1 0 0 00 1 0 0 0 0 0 1 1 10 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCAWith this solution, unique up to a permutation of symbols the biologist an behappy: there are only three ouples of possible braketing symbols, the matrixhas a small size (and for those who know the origin of the problem, it is theorret minimal size). There is some more interpretation to be done on thisanonial solution, but this is the best that omputers program an do withoutextra (biologial) knowledge. Please note that with a "simpler" sequene withthe same dimR dimension, namely 3; 7; 15; 31; 63; 127; 254; 501; 967; 1815; 3301the method desribed as exerise 2 is able to �nd immediately a orret Parikhrepresentation whih isV = � 1 0 0 0 0 0 0 2 �M = 0BBBBBBBBBB�
1 1 0 0 0 0 0 30 1 1 0 0 0 0 30 0 1 1 0 0 0 30 0 0 1 1 0 0 30 0 0 0 1 1 0 30 0 0 0 0 1 1 20 0 0 0 0 0 1 10 0 0 0 0 0 0 1

1CCCCCCCCCCA12



5. ConlusionWe dealt with two problems, that is, to �nd a parallel grammar with a minimalalphabet given either a �nite sequene of words or a sequene of numbers. Wehave shown that for the �rst problem, it is deidable to know if there is a solutionand we have also given a method to ompute it (whih has been implementedwith Maple on our omputers). For the seond problem, we had to restritourselves to a speial lass of sequenes, alled LG sequenes and our existenetheorem is not onstrutive. However, for some ases we have partial formulasthat are programmable whih we showed and used in the examples. Combinedwith geometri programs to visualize biologial data, these methods of infereneand heuristis are new usefull modelizing tools, espeially for biologists.Referenes[Lind68℄ A. LindenmayerMathematial models for ellular interation in development.Journal of Theoretial Biology; 18 :280-315, 1968.[Lind71℄ A. LindenmayerDevelopmental systems without ellular interation,their languages and grammar.Journal of TheoretialBiology; 30 :455-484, 1971.[PrKa96℄ P. Prusinkiewiz & Lila KariSubapial braketed L-systems, Grammars and theirappliation to omputer siene.Leture Notes in Computer Siene, volume 1073 :550-564.Springer-Verlag 1996.[RoSa80℄ G. Rozenberg et A. SalomaaThe mathematial theory of L systems.Aademi Press, 1980.[Salo73℄ A. SalomaaFormal Languages.Aademi Press, 1973.[SaSo78℄ A. Salomaa, M. SoittolaAutomata-Theoreti Aspets of Formal Power Series.Springer-Verlag, 1978.[Yoko92℄ T. YokomoriIndutive inferene of 0L Languages.Lindenmayer Systems, Impats on Theoretial Computer Siene,13



Computer Graphis and Developmental Biology.Springer-Verlag, 1992.[SaSo78℄ A. Salomaa, M. SoittolaAutomata-Theoreti Aspets of Formal Power Series.Springer-Verlag, 1978.
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Appendix
Proof of theorem 3.If (un)n2N is a LG sequene with Parikh representation (L;M) then let P be theharateristi polynomial of M , all ai its oeÆients and let D = dimP ( (un) ).Sine P (X) = det(X:Id�M), P has degree D, the ai are integers and P has leadingoeÆient 1. Cayley-Hamilton's theorem states that M is a root of P soMD + D�1Xi= 0 ai : M i = 0Multiplying both sides on the left by L and on the right by R, one getsL : MD : R + D�1Xi= 0 ai : L : M i : R = 0and sine L : M i : R = ui, we haveuD = D�1Xi=1 �ai : un�iso (un) is UR with order at most D = dimP ( (un) ).}Proof of theorem 4.Let R = dimR( (un) ) and d = dimH( (un) ). The relation un = RXk=1 ak : un�k forn > R shows that the lines R + 1, R + 2... of Hd with d > R and i > 0 are a linearombination (CL) of the previous lines.So the determinant of Hd with d > R is 0 and its rank is onstant equal to R + 1.Whene dimH( (un) ) = dimR( (un) ) + 1 results from minimality of dimH( (un) )and dimR( (un) ). }Proof of theorem 5.Let d = dimH( (un) ) and all Hd its Hankel matrix of size d. Sine det(Hd+1) = 0,the last line of Hd is a linear ombination (LC) of the previous lines. So the �rst termof it, ud�1 is a LC of u0; u1:::ud�2. But un = L : Mn : R for all n, so, multiplying byM i, we have that Md+i�1 is a LC of M i;M i+2:::M i+d�2 for all i whih means thatud+i�1 is a LC of ui; ui+1:::ui+d�2. So (un) is UR with dimR( un ) � d� 1. }
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