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Motivations. Working for many years with biologists of the national re-
search institute INRA, we have met on several occasions the need for modeling
tools that would build parallel grammars from observations data.

Main results and their significance. First, it is decidable to build a mini-
mal parallel grammar from a sequence of words (with a constructive proof). So
biologists have a tool that automates the making of such a grammar. Second,
it is possible to build a minimal parallel grammar from a sequence of numbers
(interpreted as words lengths); the proof is not constructive but for some poly-
nomial sequences (which are very common for biologists) we have found partial
formulas, here again easily programmable, to obtain one (if not the only one)
manimal parallel grammar corresponding to the data.

Abstract. Formal languages are sets of words. Classical generative devices
for such languages are grammars, either sequential or parallel. We deal here
with special parallel propagating deterministic grammars called Lindenmayer
grammars or "L systems” for short and we will show how to build such gram-
mars with a minimal alphabet given the words or their length at each rewriting
step. Section 1 is devoted to notations and definitions for grammars whereas
section 2 does the same for "unilinear” recurent sequences of positive integers.
Section 3 gives our main theorems and section 4 shows an application of the
theory therefore giving to biologists a way to model and extend biological data.



1. Languages and Grammars

Let E be an alphabet, that is, a set whose elements are called symbols. A word
m on F is a finite sequence of symbols of E. The empty sequence, also known as
the empty word will be denoted by w. The set of all words on E is denoted by
W(E). The concatenation of two sequences (one sequence following the other)
endows W (E) with the structure of a non abelian semigroup, whose neutral
element is w. A language on E is a subset of W(E). It is usual to note a™ the
(con)catenation of n consecutive symbols a.

On way to build such languages, possibly infinite, is to use rewriting systems. A
rewriting system S on E is a triple (E, A, R) where A is a word on an alphabet
E called the axiom and R a finite set of couples (a;,b;) of words on E called
rewriting rules and usually written a; — b;. Applying the same rule for all
occurences of a word gives parallel rewriting. Applying possibly different rules
for the occurences of the same word gives sequential rewriting. For instance,
parallel rewriting of aa with the two rules a — b and @ — ¢ leads only to bb
or cc whereas sequential rewriting with the same rules leads also to bc¢ and cb.
Ifa » z1, z1 = x2,... T, — bis a sequence of rewritings then b is said to be
derived from a, denoted by a = b. The language generated by the rewriting
system S = (A, R) is the set of all words that can be derived from the axiom :

LS)={meW(E); A=m}

Classical formal languages distinguish between ”good” words build upon ter-
minal symbols and "bad” or temporary words build upon terminal and non
terminal symbols. Thus a generative phrase structure grammar is a quadruple
G = (T,N, B,R) where T is the set of terminal symbols, N the set of non termi-
nal symbols, B is a (non terminal beginning) symbol, R a set of sequential rules.
The language generated by G is defined by the set of words built upon terminal
symbols, derived from the beginning symbol : £L(G) = {m € W(T) ; B = m}.

A propagating deterministic Lindenmayer system with no interaction (PDOL)
or L system for short in this article is a triple G = (S, A, R) where S is a set
of symbols called alphabet, A is a word called the axiom, R a set of parallel
rules such that

- no rule has w as right hand side,
- each left hand side of the rule consists of exactly one symbol,
- there is one and only one rule for each symbol.

In other words, an L system is the parallel equivalent of a deterministic context
free non erasing traditional grammar. It has to be noted that a PDOL with an
alphabet of n symbols s; is defined by exactly n rules (r;) : s; — t; where each
word ¢; has length at least 1. From now on, we will suppose that the alphabet
is ordered.

Being deterministic, not erasing and without context, an L system produces
only one word at each rewriting step.



For such grammars, the rewriting rules define a morphism f on W(S): let
fltita..tn) = f(t1)f(t2)...f(t,) where the t; are elements of the alphabet; f(A)
will denote the n-th rewriting of the axiom with the usual convention f0(A) = A.
The words sequence of the L system is defined by the function n — f"(A)
and its lengths sequence is then defined by the function n — |f™(A)| where
|m| is the length of the word m, that is, its number of symbols. In a similar
way, for a sequence (w,,) of words, the associated lengths sequences is (|wy]).

Let s1, $2...sp be the ordered elements of the alphabet. The canonical form of
a word m is s’fl(m)SQQ(m)...SZ”(m) where n;(m) is the number of occurences of
symbol s; in m. One may see this canonical form as a kind of factorization. The
canonical words sequence is the sequence of the words in canonical form.
The vector (ni(m),na(m),...np(m)) is called the counting vector of the word

m, usually denoted by C,(m).

For instance the L system over the alphabet {a, b} with axiom a and the two rules
a = b, b = ba produces successively the words b, ba, bab, babba, babbabab... So
the canonical words sequence is b, ab, ab?, a®b3, a®b° and the lengths sequence
(including the axiom) gives the Fibonacci numbers 1,1,2,3,5,8... which verify
the linear relation F,, = F,_1 + F,_ with F(0) = F(1) = 1. The induced
morphism is here defined by f(a) = b, f(b) = ba.

For further details on formal languages and L systems, see [SaLo73,RoSa80].

2. Sequences and Grammars

For the rest of this article, every sequence of numbers will be a sequence of
strictly positive numbers which is not decreasing except explicity mentioned.

Defininition 1. A sequence of numbers (u,)nen is called a Lindenmayer
growth sequence (or LG) if there exist an integer T, a square matrix M of size T
with integer positive coefficients and a vector L of T non negative integers such
that

Vn, u, = L.M" . R

where R is the column-vector (1,1...1) of length T'. The couple (L,M) is called
a Parikh representation of (u,)nen. The size T is called the Parikh dimension
of the sequence and will be noted dimp( (up) ).

It is a restriction of the classical of the definition of a IN-rational function used
in Formal Power Series Theory. See for instance [SaSo78,R0Sa80)].

2 1 0
For instance, the sequence defined by L = (1,0,0) and M = 0 2 1
0 0 3

is a LG sequence of Parikh dimension 3 whose values correspond to n — 3™.



Defininition 2. A sequence (u,)nen is called an unilinear recurent sequence
(or UR) of order R if there exists a minimal positive integer R such that

R
daq,a0...ap € Z ; a1 #0 andVn, n > R = u, = Z ar - Up—k
k=1

Here again, it is a restriction of the definition of a classical linear recurent
sequence with constant coefficients where we impose

¢ minimality (for we will want minimal alphabets),
e positivity (in order to deal with word lengths),

e integer coefficients (for they lead to counts of letters)

Y

e divisibility (since u,, is the length number n).

The integer R is called the recurence dimension of the sequence and will be
noted dimg( (un) )-

The condition a; # 0 is there to ensure that we use the same relation for
all u; with a coherent beginning (look at z, underneath). So the sequence
Up = 3Up_1 + 2up_o — uy_3 may be UR depending on ug, u; and us but the
sequences vy, Wy, z, defined by

vo=1, ©v1=2, v2=3 VUp = —3Up_1 + 2Up_2 + Vn_3
wo=1, wi=2, w,=3 wy = (Wp—1 + Wp—2 +wp_3)/3
z0=1, 21=2 Zn = Zn—2

can not be UR sequences since v, leads to negative values, the w, values are
not integers, and for z,, R=2 but a; = 0. For similar reasons, the sequences

2, 3, 4, 8, 16, 32, 64, 128,...
i, 5, 7, 9, 11, 33, 99, 990, 9900, 99000, 990000...

are (ultimately) linear recurent sequences that are not UR sequences because of
the required minimality of R.

A UR sequence (t,)nen of order R will be noted [ V' ; A | where V' is the vector
(u1,...,ug) of the first R terms of (u,)nen and A is the vector (a1, ..,agr) of the
R coefficients in the recurence relation. For instance the UR sequence defined
by up=1, u1=2, up = 3up_1 + 4u,—_o is noted [ (1,2) ; (3,4) ].

Defininition 3. The Hankel matriz with size P of a sequence (uy,)nen is the
square matrix of size P whose element at row ¢, column j is u;4;j—».



Defininition 4. The Hankel dimension of a UR sequence (u,,) is the smallest
integer D such that for k > D the Hankel matriz with size k of (uy),en have
constant rank equal to D. This dimension will be noted dimg( (u,) ).

As an example, let u,, be the sequence defined by u,, = 5n% 4+ 3n + 2 ; then the
first values of u, are 2,10, 28, 56,94,142, 200.... So the Hankel matrices of u,
with size 1, 2, 3, 4 are

2 10 28 56

(2) ( 2 10) 13 ég ;2 10 28 56 94
10 28 98 56 94 28 56 94 142

56 94 142 200

whose determinant are respectively 2, -44, -1000, 0 and whose rank are respec-
tively 1,2,3,3. Since u,, is a polynom in n of degree 2, it satisfies the unilinear
recurence relation u,, = 3up—1—3up—2+u,—3. Then for k > 3 the Hankel matrix
with size k of u,, have zero determinant and rank 3. Hence dimp( (uy,) ) = 3.

Remark : Please note that the Hankel dimension is not defined as the size of
the first Hankel matrix whose determinant is 0 for we want a ”stable” result.

To understand our choice, please consider the following example : let (u,) be
the sequence defined by the function

Lo los by 13
"0 TR T
The first values of u, are 1,2,4,9,21,47,98,190, 345 which corresponds to the

Parikh representation

L = (1,0,0,0,0,0) M =

O OO OO -
O OO O =
O OO = = O
OO === OO
O == OO OO
— - O OO

The first 8 Hankel determinants are 1,0,-1,4,-3,-1,0,0 misleading to a
possible dimension of 2 whereas the first Hankel ranks are 1,1,3,4,5,6,6,6
giving the correct value dimpg( (u,) ) = 6.

Using two consecutive determinants whose value is zero is also not a correct
definition. Consider the polynomial whose value at n is

1T ¢ 1 L, 7T 4 1 o 167 , 53 5 4723 , 331
10320" ~3360" 280" 240" 760" T azo™ T ioos0” taao" !
Its first values are 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003... The twelve first
Hankel determinants are 1, 1, -2, 0, 0, -2, -3, -1, 1, 0, 0, 0.. and the first
Hankel ranks are 1, 2, 3, 3, 4,6, 7, 8,9, 9, 9... corresponding to the correct

value dimp( (u,) ) = 9 since we used a matrix of size 9 to build this example.




3. Main theorems

Theorem 1. The lengths sequence of an L system is an LG sequence whose
Parikh dimension is the size of the alphabet.

Proof. Let £ be an L system, T the size of its alphabet sp,...s7, A its axiom
and R the vector (1,1...1) of length T'. Let M, be the matrix of the induced
morphism, that is, the matrix such that its i-th line is the counting vector
for the rewriting of the i-th symbol : My (i,j) = a; if f(s;) = Hs?’ It is
easy to check that C,(f(si)) = Cy(s;).My. Then, since f is a morphism,
Cy(f(w)) = Cy(w).My and by induction, with C,(A) = C,(A).M} one
can conclude that Oy, ( f"(4)) = Cy(A).Mf. Now, |w| = |Cy(w)| = Cy(w).R
so up = [f"(A)| = Cy(A).M}.R. &

Corollary. Every LG sequence (uy) induces an L system £ such that the
lengths sequence of £ is (uy,).

Proof. If u,, = L.M™. R then define the axiom A as the canonical word whose
counting vector is L and take for the rewriting of i-th symbol s; the canonical
word whose counting vector is the i-th line of M.

So from now on, we will call Parikh representation of an L system the couple
(L, M) where L and M are defined as in the corollary. It is immediate that two
L systems with the same alphabet and whose rules differ only by the order of
the symbols share the same Parikh representation.

Theorem 2. Let (w,) be a finite sequence of ¢t + 1 words whose alphabet has ¢
symbols and whose lengths sequence is not decreasing. It is decidable whether
there exists at least one L system whose words sequence is (wy,). Moreover, if
there exists only one such L system, it can be effectively and easily constructed.

Proof. Let V; be the counting vector of w;, M; the square matrix of size ¢ whose
lines are V1, V3...V;, and let Ms be the square matrix of size ¢ whose lines are
Va, V3..Viq1. Since f = f(a) implies C,(8) = Cy(a) My, if there is an L system
whose words sequence is (w,) then the matrix M of its morphism satisfies the
t? equations V;41 = V;M so M can be computed by Ml_lMg. So our problem
is equivalent

a) to decide if a linear integer numeric matrix system has at least one non
negative integer solution M

b) to find, whenever such a solution exists, an L system whose Parikh rep-
resentation is (wo, M) that gives exactly the words ¢;.

Condition a) is a simple linear algebra problem and condition b) can be done
by trying all the possibilities on the symbols of the alphabet compatible with
the words. This process is finite since each rewriting rule has finite length.<



Remark : Every matrix solution may not be an acceptable solution if the sym-
bols for the words generated by the L system are not at the same position as in
the words w;. For instance, consider the following sequence of 5 words :

dad, dbad, dedbad, ddbdcdbad, ddcdddbdcdbad, dddbdddcdddbdcdbad

whose alphabet has t=4 symbols. The first word wg has the counting vector
Cy(wp)=(1,0,0,2). The second counting vector is (1,1,0,2) and the five first
words lead to the four equations C,(w;+1) = C,(w;)M whose unique solution
is the matrix

11 0 0
0 0 1 1
M= 0 1 0 1
0 0 0 1

Thus a rewrites to a word whose canonical form is a b (this may be either a b or
b a), b may be rewritten either as ¢ d or as d ¢, ¢ may be rewritten either as b d
or as d b and d rewrites to d. Now, the first occurence of symbol b has position
2 in word wy, just after d. Since rule 4 has length 1 and rule 2 has length 2, b
rewrites as symbols 2 and 3 of word wy, that is, b — cd. Similarly, a rewrites
as symbols 4 and 5 of word w; which are b a and finally, ¢ rewrites to d b. It is
easy to check that with wy as axiom, one gets the same other words t;.

Now, if wg had been add instead of dad, the equations would have been the
same but M would not be an acceptable solution.

Theorem 3. If (u,)nen is a LG sequence then (up)nen is a UR sequence and
dimg( (un) ) < dimp( (un))

Proof. See Appendix.

We can not say better than dimpg( (up) ) < dimp( (uy) ) since for our example
following definition 1, dimg( (u,) ) = 1, dimp( (uy,) )=3 and for the Fibonacci
sequence dimpg( (un) ) = 2, dimp( (up) )=2.

Theorem 4. If (u,) is a UR sequence then dimpg( (uy) ) = dimg( (u,) ) + 1.
Proof. See Appendix.

Theorem 5. If (u,)nen is a LG sequence with Parikh representation (L,M)
then

dimp( (un) ) < dimp( (un) )

Proof. See Appendix.

Remark : It would be tempting (since it is the case for a lot of examples) to think
that dimp( (u,) ) = dimpg( (un) ) +1 but unfortunately, here is a counter-
example: u, = n3/6 —n?/2+4n/3 + 1 whose first values are 1,2,3,5,9,16,27,43.
dimp( (un) ) = 4 since u,, is a polynomial of degree 3 but there is no L system
with an alphabet of 4 symbols whose length sequence is (u.,).



The proof is easy but lengthy: since the first length is 1, the axiom is reduced
to one symbol, say a. Since the second length is 2, a rewrites to aa, ab, bb or
bc. a = aa is not possible for it would give a third length of 4 and the correct
length is 3. Let’s try the second solution : a — ab ; the third legnth is 4 and
since we have already ab, b rewrites to only symbol. It can’t be a so try b, c etc.
Using a computer program to be sure that no case is forgotten, it is possible to
conclude that for this example dimp( (u,) ) > dimg( (u,) ) +1.

Theorem 6. For every LG sequence there exists at least one Parikh repre-
sentation with minimal size.

Proof. Let u, be a LG sequence and consider the set S of all L systems whose
lengths sequence is u,. There is at least one element in S, namely the canonical
representation [L; M| induced by (L, M). S is a finite set since the the equations
un, = |f"(A)| are integer relations on positive unknonws of fixed sums. So the
set {dimp(L); L € S} has a smaller element. {

Remark: The theorem does not reveal how to build the canonical representation
[L; M]. Neither does it give the exact dimension of this representation. The
reason of it is simple: to deal with only lengths sequences of words is much
harder than to work with words sequences and can lead only to rules in canonical
form. However, we have found some partial solutions mainly in the polynomial
case and when the inequality of theorem 5 reduces to an equality. For these
cases, the solution with smallest dimension can be exhibited from a sometimes
tedious computation, especially for polynomials but to our knowledge, a general
algorithm to get it is still to be found. To get a glimpse of the difficulty of
the problem, we leave it to the reader to prove the following assumptions as
exercises.

EXERCISE 1.

The LG lengths sequence n — (n + 1) is given, in the smallest dimension ¢ + 1,
by the left vector L such that L; =1, L; = 0 for i > 1 and the matrix M such
that M(1,1) =1, if i > j then M(i,j) = 0, else if i = 1 then M(i,j) = C’t]_2
and finally else M (i,j) = C’g;ll_i where the value C? is the classical binomial
coefficient n!/pl(n — p)!.



Lemma
n p—1
If sg(n) = Z §* then (n +1)P = 1-|-Z C’{; si(n) for k >0 and n > 1.
j=1 k=0

Proof

Develop (n + 1)? as (a + b)? and take the first term n®? from the sum. So

p p—1
(n—l—l)p:np—l—z C;fnp_k =np+z C’]’;nk
k=1 k=0

Do the same for n?, (n — 1)?,...2P and add term to term. One gets

(n+1)P = 1+Zn: Cy <,,_ j’“)

j=1 k=0

p—1

Now, permute the two sigmas : (n+1)? = 1+ Z C’j Z 4% |. which is
k=0

what we wanted, using the definition of si(n).

Solution to Exercise 1

From the definition of the matrix, M is triangular, with only 0 under the diag-
onal. $



EXERCISE 2.

The set of LG sequences n — p(n) such that the smallest representation of p(n)
is found by the following method includes all polynomials p(n) = Z?:o a;n’ of
degree d whose coefficients are either 7) all positive or 4i) all positive but ag—1.

The method is: take L as the vector (1,0,0...ag — 1) of length d + 1 or by aq if
d=0. Define M as a square matrix of size d + 1 by M (i,i)=1, M(i,i + 1)=1,
M(i,d+1)=-1+ Zj‘:i L(i,j)a; and by 0 anywhere else, where the L function
is defined by L(i,j) = Yj_, (=1)"**CkkI for j > 0 and L(4,0) = 0.

The following theorem and its corollaries are easy to prove by a direct calculus.

Theorem 7. Let S(T) be the set of the LG sequences whose Parikh dimension
is less than T, U(T) be the set of the UR sequences whose Hankel dimension is
less than T, let S be the union of all S(T) and & the union of all Z(T). Morever,
if (up)nen=[G1, M1] and (v,)nen=[Ga, M>] are in S, then

a) (up+vp)nen = [cone(Gy,G2) , blad(My, M>) ],
b)  (a.un)nen = [aGy, My ]fora€ N,
¢)  (Un-Vn)nen [ (Gi ®G2), M1 ® M, ]

where cone stands for vector concatenation, blad is the block addition of matrices
and ® is the usual tensor product.

Corollary 1. S and U are stable for the addition, the multiplication by a pos-
itive constant and for Hadamard’s multiplication (term to term multiplication).

Corollary 2. If dimH( (up) ) = dy and dimH( (v,) ) = d, then

a) dimH( (u,)+ (vn)) >  dy+dy,
b) dimH( k.(u,) ) = dy,
¢)  dimH( (un).(vy) ) > dy.dy.

4. A biological detailed example

Consider the following words sequence, which comes, slightly modified from Lin-
denMayer’s Mathematical models (see [Lind68]) for the red alga Callithamnion
roseum.

word 1 11314

word 2 1114154

word 3 111541654

word 4 11165417654

word 5 111765418x2y7¢654

word 6 1118x2y765418x13y8x2y7¢654
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word 7 1118x13y8x2y765418x114y8x13y8x2y7¢6%54

word 8 1118x114y8x13y8x2y765418x1154y8x114y
8x13y8x2y7654

word 9 1118x1154y8x114y8x13y8x2y765418x1165
4y8x1154y8x114y8x13y8x2y7¢654

word 10 : 1118x11654y8x1154y8x114y8x13y8x2y7¢63%5
418x117654y8x11654y8x1154y8x114y8x13
y8x2y7¢6%54

word 11 : 1118x117654y8x11654y8x1154y8x114y8x1
3y8x2y765418x118x2y7654y8x117654y8x1
1654y8x1154y8x114y8x13y8x2y7654

word 12 : 1 118x118x2y7654y8x117654y8x11654y8x1
154y8x114y8x13y8x2y765418x118x13y8x2
y7654y8x118x2y7654y8x117654y8x11654
8x1154y8x114y8x13y8x2y76%54

Yokomori’s algorithm ([Yoko92]) to identify the L system that produces these
words since "PDOL languages are identifiable in the limit from positive data”
does not simply apply here, but our method of theorem 2 does not give either
directly a solution : M; has determinant 0. But since the linear equations
corresponding to V;41 = V;M have many real solutions, one could use a few
nearly blind trials or a systematic computer programs to detect the integer
solution.

However, it is possible to do better and quicker with the help of a little extra
information to get a straightforward solution. We are using a branching struc-
ture, modeled by a bracketed grammar (see [Lind71]): 8 and y or x and y are
the only candidates as bracketing symbols that can read as [ and | respectively.
The fact that the structure is apical (see [PrKa96]) is not usefull, though. So
we know already the last two lines of the solution matrix for x and y are the
last two symbols of the aphabet. Using this partial information and simplifying
the equations (such as u+wv=0 leads only to u=v=0, 2u+3v+w=1 leads only
to u=v=0, w=1...), our resolution leads to only one simple parametric rule,
namely 1 — 1 with i > 0 and two equations of the form u +v=1 which have to
be solved with non negative integers. So it is quick and easy to find the correct
ten rules

1 - 1 2 = 13
3 —» 14 4 — 54
5 — 6 6 — 7
7 —» 8x2y 8§ —» 8
X — X y — ¥y

and to use the first word 1 1 3 1 4 as axiom.

The resolution of this problem takes a couple of seconds with M aple, even on a
P.C. This is a great improvement, compared to brute combinatorial exploration
for the 8 rules and 8 symbols.

Now, let’s try to see if we are able to derive the same solution knowing only the
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numbers of symbols for each word, that is, using only the sequence
5,7,9,11,16, 25, 36,49, 64, 81,103, 134

without even knowing that we have 10 symbols (for now we don’t even know
that the structure is bracketed). Even with so few values the unilinear relation
is detected with an dimpg dimension of 7 :

Up = 2Up—1 — Up—2 + Up—g — Up_7 fOr n > 7

But the closed form is not a polynomial and so, without a mathematics resolu-
tion, only a brute "try and check” algorithm that tries all matrices of size 7, 8,
9, 10, 11 is able to find the Parikh representation whose left vector is

V. = (301100000 0)

and whose matrix is

O OO OO OO o
DO OO OO OOO
OO R MHF OODOOOO
O = O OO OO OoOo
_ OO OO0 OO OoO

OO OO OO O = = =
OO OO ODODOO O
O DOD OO OO =M= OO
OO OO OO OO O
OO OO OOO O

With this solution, unique up to a permutation of symbols the biologist can be
happy: there are only three couples of possible bracketing symbols, the matrix
has a small size (and for those who know the origin of the problem, it is the
correct minimal size). There is some more interpretation to be done on this
canonical solution, but this is the best that computers program can do without
extra (biological) knowledge. Please note that with a ”simpler” sequence with
the same dimpg dimension, namely 3,7,15,31,63,127,254,501,967, 1815, 3301
the method described as exercise 2 is able to find immediately a correct Parikh
representation which is

Vo

O OO OO OO = =
O OO ODODOO =M= O
O OO OO =M= O O
OO OO =M OO O
OO O OOO O
OO = OOOO O
O OODOOO O
== N W W W W W N

[y
[\



5. Conclusion

We dealt with two problems, that is, to find a parallel grammar with a minimal
alphabet given either a finite sequence of words or a sequence of numbers. We
have shown that for the first problem, it is decidable to know if there is a solution
and we have also given a method to compute it (which has been implemented
with Maple on our computers). For the second problem, we had to restrict
ourselves to a special class of sequences, called LG sequences and our existence
theorem is not constructive. However, for some cases we have partial formulas
that are programmable which we showed and used in the examples. Combined
with geometric programs to visualize biological data, these methods of inference
and heuristics are new usefull modelizing tools, especially for biologists.
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APPENDIX

Proof of theorem 3.

If (un)nen is a LG sequence with Parikh representation (L, M) then let P be the
characteristic polynomial of M, call a; its coefficients and let D = dimp( (un) ).
Since P(X) = det(X.Id — M), P has degree D, the a; are integers and P has leading
coefficient 1. Cayley-Hamilton’s theorem states that M is a root of P so

D—1
MP 4+ Za,.M" =0

i= 0

Multiplying both sides on the left by L and on the right by R, one gets

D-—1
L.MP R+ Z a;i . L. M'.R =0
i= 0
and since L . M? . R = wu;, we have
D—1

up = E —Q; . Un—i

i=1

so (un) is UR with order at most D = dimp( (un) ).

Proof of theorem 4.
R
Let R = dimg( (un) ) and d = dimu( (un) ). The relation u, = Z ag . Un—yp for
k=1
n > R shows that the lines R+ 1, R+ 2... of Hy with d > R and 7 > 0 are a linear
combination (CL) of the previous lines.
So the determinant of Hy with d > R is 0 and its rank is constant equal to R + 1.
Whence dimpg( (un) ) = dimgr( (un) ) + 1 results from minimality of dimg( (un) )
and dimg( (un) ). &

Proof of theorem 5.

Let d = dimpu( (un) ) and call Hy its Hankel matrix of size d. Since det(Hys+ 1) = 0,
the last line of Hy is a linear combination (LC) of the previous lines. So the first term
of it, ug—1 is a LC of wg, uy...uqg—2. But u, = L. M"™ . R for all n, so, multiplying by
M, we have that M9+~ is a LC of M*, M'*2.. M'*¢=2 for all ¢ which means that
Ud+i—1 18 a LC of wi, wig1...uiyd—2. So (un) is UR with dimp( v, ) < d—1. &
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